Hire Python Background

Best LLMs for Coding Python 2025

Python remains one of the most developer-friendly and widely used programming languages across industries. It’s the go-to choice for data science, automation, web development, and increasingly, AI and machine learning. But even experienced Python developers face repetitive coding tasks, debugging challenges, and the need to rapidly adapt to changing requirements.

Enter Large Language Models (LLMs).

These powerful AI systems are transforming how developers write, test, and deploy Python code. Whether through autocomplete in IDEs, plain English-to-code generation, or full application logic design, LLMs are shaping a new era of software development.

Why Use LLMs for Python Development?

Python’s concise syntax and vast ecosystem already make it ideal for rapid development. However, LLMs take this efficiency to another level by helping with:

  • Function generation from comments or plain language

  • Code completion with context awareness

  • Real-time debugging assistance

  • Library or framework suggestions (Flask, Django, Pandas, etc.)

  • Writing unit tests or docstrings

  • Learning and refactoring unfamiliar codebases

Rather than replacing human developers, LLMs act as powerful assistants. The key is choosing the right one based on performance, integration, and relevance to your project.

How We Evaluated These LLMs

Each model is assessed on:

  • Code generation quality

  • Support for plain language prompts

  • Understanding of libraries and APIs

  • Speed and accessibility

  • Integration in dev environments

  • Performance on logic-intensive tasks

Google Gemini Series

Google’s Gemini models continue to evolve with high-speed inference, broad knowledge coverage, and context awareness. Gemini’s Python capabilities stand out particularly in structured code generation, data science tasks, and integration with Google Cloud environments.

Gemini 1.5 Flash

Gemini 1.5 Flash is designed for real-time performance with smaller context windows. While it’s optimized for speed, it still handles general Python coding tasks such as function generation and bug fixes effectively.

Use Case: Fast code suggestions, script refactoring, lightweight IDE tasks

before

def calculate_total(items):
total = 0
for item in items:
if item["type"] == "A":
total += item["price"] * 0.9 # 10% discount
elif item["type"] == "B":
total += item["price"] * 0.8 # 20% discount
else:
total += item["price"]
return total

items = [
{"type": "A", "price": 100},
{"type": "B", "price": 200},
{"type": "C", "price": 300},
]

total = calculate_total(items)
print(f”Total: {total}”)

After

def calculate_total(items):
discounts = {
"A": 0.9,
"B": 0.8,
}
total = 0
for item in items:
discount = discounts.get(item["type"], 1.0) # Default to 1.0 (no discount)
total += item["price"] * discount
return total

items = [
{"type": "A", "price": 100},
{"type": "B", "price": 200},
{"type": "C", "price": 300},
]

total = calculate_total(items)
print(f"Total: {total}")

Gemini 1.5 Pro

This version adds significantly larger context windows and better reasoning ability. It’s more capable in understanding Python projects with multiple files and complex business logic.

Use Case: Refactoring large codebases, writing reusable modules, integrating with APIs

# reusable_module.py

def greet(name):
return f"Hello, {name}!"

def add(x, y):
return x + y

# In another Python file:
import reusable_module

message = reusable_module.greet("Alice")
print(message) # Output: Hello, Alice!

sum_result = reusable_module.add(5, 3)
print(sum_result) # Output: 8

Gemini 2.0 Flash Lite and Flash

These newer models build on Flash’s strengths but with upgraded training data and optimized token usage. They are suitable for interactive coding tasks and performing real-time suggestions in Jupyter Notebooks or Google Colab.

Use Case: Data science workflows, code tutoring, real-time auto-suggestions

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# 1. Load the data (replace with your data loading)
data = pd.read_csv("customer_data.csv")

# 2. Data Preparation (simplified)
# Assuming 'churn' is the target variable (0 or 1)
# and other columns are features
X = data.drop("churn", axis=1)
y = data["churn"]

# 3. Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 4. Model Training (Logistic Regression)
model = LogisticRegression()
model.fit(X_train, y_train)

# 5. Model Evaluation
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")

Gemini 2.5 Pro

Gemini 2.5 Pro is Google’s most capable developer-facing model. It handles long-context reasoning, high-quality explanations, and complex Python logic generation. When used with tools like Google Cloud’s Code Assist or Firebase Extensions, it becomes even more powerful.

Use Case: Building production Python apps, full-stack logic design, large-scale automation scripts

1. Server Patching and Reboot (Bash Script)

This script iterates over a list of servers, applies security patches, and reboots them sequentially.

#!/bin/bash

# List of servers to patch (could be read from a file or inventory system)
SERVERS=( "server01.example.com" "server02.example.com" "server03.example.com" ... "server100.example.com" )

# Log file
LOG_FILE="/var/log/patching_$(date +%Y%m%d_%H%M%S).log"

# SSH options (ensure key-based authentication is set up!)
SSH_OPTS="-o StrictHostKeyChecking=no -o ConnectTimeout=10"

log_message() {
echo "$(date +'%Y-%m-%d %H:%M:%S') - $1" | tee -a "$LOG_FILE"
}

log_message "Starting patching run..."

for server in "${SERVERS[@]}"; do
log_message "Processing server: $server"

# Check connectivity
ping -c 1 "$server" > /dev/null 2>&1
if [ $? -ne 0 ]; then
log_message "ERROR: Cannot reach $server. Skipping."
continue
fi

log_message "Applying updates on $server..."
# Use ssh to run commands remotely. Assumes passwordless sudo is configured or run as root.
# The specific update command depends on the OS (apt, yum, dnf, etc.)
ssh $SSH_OPTS "$server" "sudo apt-get update && sudo apt-get upgrade -y" >> "$LOG_FILE" 2>&1
if [ $? -ne 0 ]; then
log_message "ERROR: Update failed on $server."
# Decide whether to continue or stop the whole process
# continue
else
log_message "Updates applied successfully on $server."
log_message "Rebooting $server..."
ssh $SSH_OPTS "$server" "sudo reboot" >> "$LOG_FILE" 2>&1
# Add a wait period and check if server comes back online (more complex logic needed here)
sleep 60 # Simple wait
log_message "$server reboot initiated."
fi

# Optional: Add delay between servers
# sleep 30
done

log_message "Patching run finished."
exit 0

Key aspects for scale:

  • Handles a list of targets.
  • Uses SSH for remote execution.
  • Basic logging.
  • Needs improvement for parallel execution, better status checking after reboot, and robust error handling.

2. Log File Aggregation and Analysis (Python Script)

This script processes web server access logs from multiple sources (assuming they’ve been collected to a central location), extracts specific information (like IP addresses), and generates a summary report.

import re
import os
import glob
from collections import Counter
import csv
from datetime import datetime

# Configuration
LOG_DIR = "/mnt/central_logs/webserver/" # Directory where logs are collected
LOG_PATTERN = "access.log-*" # Pattern to match log files
OUTPUT_CSV = f"/var/reports/ip_summary_{datetime.now():%Y%m%d_%H%M}.csv"
IP_REGEX = r'^(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # Simple regex to get IP at start of line

def process_logs(log_directory, file_pattern, ip_regex):
"""
Processes log files matching a pattern in a directory.
Returns a Counter object with IP address frequencies.
"""
ip_counter = Counter()
log_files = glob.glob(os.path.join(log_directory, file_pattern))
print(f"Found {len(log_files)} log files to process.")

if not log_files:
print("No log files found matching the pattern.")
return ip_counter

for log_file in log_files:
print(f"Processing {log_file}...")
try:
with open(log_file, 'r', encoding='utf-8', errors='ignore') as f:
for line in f:
match = re.match(ip_regex, line)
if match:
ip_address = match.group(1)
ip_counter[ip_address] += 1
except FileNotFoundError:
print(f"Warning: File {log_file} not found (might have been rotated). Skipping.")
except Exception as e:
print(f"Error processing file {log_file}: {e}")
# Decide whether to continue or stop

return ip_counter

def write_report(ip_counts, output_file):
"""Writes the IP counts to a CSV file."""
print(f"Writing report to {output_file}...")
try:
with open(output_file, 'w', newline='') as csvfile:
fieldnames = ['IP_Address', 'Request_Count']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)

writer.writeheader()
# Sort by count descending for the report
for ip, count in ip_counts.most_common():
writer.writerow({'IP_Address': ip, 'Request_Count': count})
print("Report written successfully.")
except Exception as e:
print(f"Error writing report file {output_file}: {e}")

if __name__ == "__main__":
print("Starting log analysis...")
start_time = datetime.now()

ip_frequencies = process_logs(LOG_DIR, LOG_PATTERN, IP_REGEX)

if ip_frequencies:
write_report(ip_frequencies, OUTPUT_CSV)
else:
print("No data processed.")

end_time = datetime.now()
print(f"Log analysis finished. Total time: {end_time - start_time}")

Key aspects for scale:

  • Processes potentially large numbers of files and large file sizes.
  • Uses efficient data structures (Counter).
  • Aggregates data from multiple sources.
  • Generates a structured output.
  • Needs improvement for handling truly massive data (might need distributed processing like Spark/Hadoop or streaming).

3. User Account Provisioning (Conceptual – using a hypothetical API/tool)

This illustrates provisioning a new user across multiple systems (e.g., Active Directory, Linux systems, SaaS application) using APIs or command-line tools. This is often done with Identity Management (IdM) systems or configuration management tools, but a script could orchestrate it.

# Conceptual Python script - requires specific libraries/SDKs for each system

import requests # For REST APIs
import subprocess # For CLI tools
import json
import logging

# --- Configuration ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# User details (would typically come from HR system or request form)
NEW_USER = {
"username": "jdoe",
"full_name": "John Doe",
"email": "john.doe@example.com",
"department": "Engineering",
"manager_email": "manager@example.com",
"initial_password": "TemporaryPassword123!" # Should be securely generated & handled
}

# System endpoints and credentials (should be stored securely, not hardcoded!)
AD_API_ENDPOINT = "https://ad-api.example.com/users"
AD_API_KEY = "SECURE_API_KEY_AD"
LINUX_SERVER_LIST = ["linuxdev01.example.com", "linuxprod01.example.com"]
SAAS_APP_API_ENDPOINT = "https://api.saasapp.com/v1/users"
SAAS_APP_API_KEY = "SECURE_API_KEY_SAAS"

# --- Functions for each system ---

def provision_ad_account(user_info):
logging.info(f"Provisioning Active Directory account for {user_info['username']}")
headers = {"Authorization": f"Bearer {AD_API_KEY}", "Content-Type": "application/json"}
payload = {
"userName": user_info['username'],
"displayName": user_info['full_name'],
"mail": user_info['email'],
"department": user_info['department'],
# ... other AD attributes
}
try:
response = requests.post(AD_API_ENDPOINT, headers=headers, json=payload, timeout=30)
response.raise_for_status() # Raise exception for bad status codes (4xx or 5xx)
logging.info(f"AD account created successfully for {user_info['username']}.")
return True
except requests.exceptions.RequestException as e:
logging.error(f"Failed to create AD account for {user_info['username']}: {e}")
return False

def provision_linux_account(user_info, server_list):
logging.info(f"Provisioning Linux accounts for {user_info['username']}")
success_count = 0
for server in server_list:
logging.info(f"Processing Linux server: {server}")
try:
# Use SSH to run useradd command (requires proper SSH setup and permissions)
# This is simplified; real script would handle groups, home dirs, shells etc.
cmd = f"ssh {server} 'sudo useradd -m -c \"{user_info['full_name']}\" {user_info['username']}'"
result = subprocess.run(cmd, shell=True, check=True, capture_output=True, text=True, timeout=60)
logging.info(f"Linux account created on {server} for {user_info['username']}.")
# Need separate step for password setting or SSH key distribution
success_count += 1
except subprocess.CalledProcessError as e:
logging.error(f"Failed to create Linux account on {server}: {e.stderr}")
except subprocess.TimeoutExpired:
logging.error(f"Timeout creating Linux account on {server}")
except Exception as

OpenAI Models

OpenAI has long dominated the LLM space for developers. In 2025, its latest models push even further, with multi-modal capabilities, cross-language logic generation, and deep understanding of Python’s ecosystem.

GPT-4o Mini and GPT-4o

GPT-4o Mini is the lightweight sibling of GPT-4o, providing lower latency at a smaller cost. It’s well-suited for embedded development environments and mobile tools.

GPT-4o (Omni) is OpenAI’s flagship multi-modal model. It understands voice, text, image, and code—all in one interface. For Python developers, its standout features include deep reasoning, code explanation, and end-to-end application building from prompts.

Use Case: From brainstorming Python scripts to explaining cryptic bugs in unfamiliar packages.

Example: A Bug in a Data Processing Package

Context: You are using a data processing package called DataCruncher to analyze a large dataset. After running your analysis, you encounter an unexpected output: the results are significantly different from what you anticipated.

Step 1: Describe the Bug

  • Observation: The output of the function process_data() is returning a list of negative values, even though the input data contains only positive integers.
  • Expected Behavior: The function should return a list of processed values that are all positive.

Step 2: Investigate the Code

  • Check Documentation: Review the package documentation for process_data(). It mentions that the function applies a transformation that includes a normalization step.
  • Examine Input Data: Ensure that the input data is correctly formatted and contains no anomalies (e.g., NaN values).

Step 3: Debugging Steps

  • Add Logging: Insert print statements or logging to track the values at different stages of the function. For example:
def process_data(data):
print("Input Data:", data)
normalized_data = normalize(data)
print("Normalized Data:", normalized_data)
return transformed_data
  • Run Tests: Create a small test case with known outputs to see if the function behaves as expected.

Step 4: Identify the Source of the Bug

  • Trace the Logic: After adding logging, you notice that the normalization step is dividing by the maximum value of the dataset, which is unexpectedly low due to an outlier.
  • Check for Edge Cases: The function does not handle cases where the maximum value is zero, leading to division by zero and resulting in negative values.

Step 5: Propose a Solution

  • Modify the Code: Update the normalization logic to handle edge cases:
def normalize(data):
max_value = max(data)
if max_value == 0:
return [0] * len(data) # Avoid division by zero
return [x / max_value for x in data]

Step 6: Test the Solution

  • Run the Function Again: After implementing the fix, rerun the process_data() function with the original dataset to verify that it now produces the expected positive values.

O3 Mini and O3 Mini High

These models represent OpenAI’s optimization push, targeting resource-efficient environments. They’re good for simple code generation, test writing, or chatbot-based development support.

Use Case: Generating reusable utility functions, integration testing, helping junior developers

Below is an example of integration testing using Python’s built-in unittest framework. In this example, assume we have a simple application with multiple components that work together. We’ll simulate a scenario where a web server is integrated with a database access layer.

Application Code

Imagine you have a module with two components: a database interface (db_interface.py) and a web server endpoint (app.py). For demonstration, the code is simplified.

# db_interface.py

import sqlite3

DATABASE = 'test.db'

def initialize_database():
connection = sqlite3.connect(DATABASE)
cursor = connection.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL
)
''')
connection.commit()
connection.close()

def add_user(name):
connection = sqlite3.connect(DATABASE)
cursor = connection.cursor()
cursor.execute('INSERT INTO users (name) VALUES (?)', (name,))
connection.commit()
connection.close()

def get_users():
connection = sqlite3.connect(DATABASE)
cursor = connection.cursor()
cursor.execute('SELECT id, name FROM users')
users = cursor.fetchall()
connection.close()
return users
# app.py

from db_interface import initialize_database, add_user, get_users

def setup_app():
# Initialize app dependencies
initialize_database()

def create_user(name):
add_user(name)
return f"User '{name}' successfully created!"

def list_users():
users = get_users()
return users

Integration Test Code

The following integration test verifies that the web server endpoints (create_user and list_users) correctly integrate with the database layer.

# test_integration.py

import os
import sqlite3
import unittest
from app import setup_app, create_user, list_users
from db_interface import DATABASE

class IntegrationTest(unittest.TestCase):

@classmethod
def setUpClass(cls):
# Setup application dependencies
# Remove existing test database if it exists to ensure a clean state
if os.path.exists(DATABASE):
os.remove(DATABASE)
setup_app()

def test_create_and_list_user(self):
# Create a new user using the web endpoint
response = create_user("Alice")
self.assertEqual(response, "User 'Alice' successfully created!")

# List users and verify "Alice" is returned
users = list_users()
self.assertTrue(len(users) >= 1)

# Check 'Alice' exists in the users list
user_names = [user[1] for user in users]
self.assertIn("Alice", user_names)

def test_database_persistence(self):
# We insert another user
create_user("Bob")

# Directly access the database to verify persistence
connection = sqlite3.connect(DATABASE)
cursor = connection.cursor()
cursor.execute("SELECT name FROM users WHERE name = ?", ("Bob",))
result = cursor.fetchone()
connection.close()

self.assertIsNotNone(result)
self.assertEqual(result[0], "Bob")

if __name__ == '__main__':
unittest.main()

Explanation

  1. Application Setup:

    • setup_app() is called in setUpClass() to initialize the database.
    • The test database file is removed if it exists to ensure tests run from a clean slate.
  2. Integration Testing:

    • The test_create_and_list_user method uses the web endpoints to create a user and ensure it appears in the list.
    • The test_database_persistence method directly queries the database to verify that the data persists as expected.
  3. Running the Tests:

    • Save the test code in a file named test_integration.py and run using:
python -m unittest test_integration.py

This example demonstrates a full integration test setup where multiple components (a web-app layer and a database layer) are tested together to ensure they work as expected in concert.

O1

O1 focuses on core reliability and is best used for enterprise-grade development environments where stability is more important than multi-modal capabilities.

Use Case: Long-term projects with high testing requirements, financial systems, and regulated workflows.

Below is a simple example of Python code for a basic financial system. It tracks income and expenses and creates a profit and loss statement.

First, a few terms to define:

  • Transaction: An entry that records financial activity like income or expenses.

  • Ledger: A record or list of transactions.

  • Profit and Loss Statement: A report that shows total income minus total expenses.

Here is the example code:

# Simple Financial System in Python

class Transaction:
def __init__(self, description, amount):
self.description = description
self.amount = amount

class FinancialSystem:
def __init__(self):
self.transactions = []

def add_income(self, description, amount):
# Adds an income transaction
self.transactions.append(Transaction(description, amount))

def add_expense(self, description, amount):
# Adds an expense transaction (amount is stored as negative)
self.transactions.append(Transaction(description, -abs(amount)))

def generate_profit_and_loss(self):
total_income = sum(t.amount for t in self.transactions if t.amount > 0)
total_expenses = sum(abs(t.amount) for t in self.transactions if t.amount < 0)
net_profit = total_income - total_expenses

return {
'total_income': total_income,
'total_expenses': total_expenses,
'net_profit': net_profit
}

# Example usage
finance = FinancialSystem()
finance.add_income("Salary", 3000)
finance.add_income("Freelance", 1200)
finance.add_expense("Rent", 800)
finance.add_expense("Groceries", 200)

report = finance.generate_profit_and_loss()
print("Total Income:", report['total_income'])
print("Total Expenses:", report['total_expenses'])
print("Net Profit:", report['net_profit'])

You can do the following in your financial system:

  • Add more transactions for income or expenses.

  • Write functions to create other reports, like a balance sheet (a summary of assets and liabilities).

Sources:

  • For US accounting rules, see the FASB Accounting Standards Codification (fasb.org).

  • For international standards, see the IFRS Foundation (ifrs.org).

Anthropic’s Claude Models

Anthropic’s Claude family emphasizes clarity, safety, and transparency—traits that make it particularly useful in coding environments where collaboration and explanation matter as much as raw performance.

Claude 3.5 Haiku

Claude 3.5 Haiku is optimized for speed, delivering quick responses to Python queries and basic logic generation. It works well in chat-based Python tutoring or pair programming scenarios.

Use Case: Onboarding new Python developers, code walkthroughs, quick script generation.

Python code walkthrough example that demonstrates a data processing script.

# data_processor.py

import pandas as pd
import numpy as np
from typing import List, Dict, Optional
import logging

# Configure logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s: %(message)s')
logger = logging.getLogger(__name__)

class DataProcessor:
"""
A class to process and analyze complex datasets with multiple transformation steps.

Key Responsibilities:
1. Load data from various sources
2. Clean and preprocess the dataset
3. Perform advanced statistical analysis
"""

def __init__(self, data_source: str):
"""
Initialize the DataProcessor with a data source.

Args:
data_source (str): Path to the input data file
"""
self.data_source = data_source
self.raw_data: Optional[pd.DataFrame] = None
self.processed_data: Optional[pd.DataFrame] = None

def load_data(self) -> None:
"""
Load data from the specified source with error handling.
Supports CSV and Excel file formats.
"""
try:
# Determine file type and load accordingly
if self.data_source.endswith('.csv'):
self.raw_data = pd.read_csv(self.data_source)
elif self.data_source.endswith(('.xls', '.xlsx')):
self.raw_data = pd.read_excel(self.data_source)
else:
raise ValueError("Unsupported file format")

logger.info(f"Data loaded successfully. Shape: {self.raw_data.shape}")

except FileNotFoundError:
logger.error(f"File not found: {self.data_source}")
raise
except pd.errors.EmptyDataError:
logger.warning("The data source is empty")
self.raw_data = pd.DataFrame()

def clean_data(self,
drop_columns: Optional[List[str]] = None,
handle_missing: str = 'mean') -> None:
"""
Clean and preprocess the dataset.

Args:
drop_columns (List[str], optional): Columns to drop
handle_missing (str): Strategy for handling missing values
Options: 'mean', 'median', 'drop'
"""
if self.raw_data is None:
logger.error("No data loaded. Call load_data() first.")
return

# Create a copy to preserve original data
self.processed_data = self.raw_data.copy()

# Drop specified columns
if drop_columns:
self.processed_data.drop(columns=drop_columns, inplace=True)

# Handle missing values
if handle_missing == 'mean':
self.processed_data.fillna(self.processed_data.mean(), inplace=True)
elif handle_missing == 'median':
self.processed_data.fillna(self.processed_data.median(), inplace=True)
elif handle_missing == 'drop':
self.processed_data.dropna(inplace=True)

logger.info(f"Data cleaned. Remaining shape: {self.processed_data.shape}")

def analyze_data(self) -> Dict[str, float]:
"""
Perform statistical analysis on the processed data.

Returns:
Dict[str, float]: Key statistical metrics
"""
if self.processed_data is None:
logger.error("No processed data available")
return {}

# Compute advanced statistical metrics
analysis_results = {
'mean': self.processed_data.mean().to_dict(),
'median': self.processed_data.median().to_dict(),
'std_dev': self.processed_data.std().to_dict(),
'correlation_matrix': self.processed_data.corr().to_dict()
}

return analysis_results

def detect_outliers(self, method: str = 'iqr') -> pd.DataFrame:
"""
Detect outliers using different statistical methods.

Args:
method (str): Outlier detection method

Returns:
pd.DataFrame: Detected outliers
"""
if self.processed_data is None:
logger.error("No processed data available")
return pd.DataFrame()

if method == 'iqr':
# Interquartile Range (IQR) method
Q1 = self.processed_data.quantile(0.25)
Q3 = self.processed_data.quantile(0.75)
IQR = Q3 - Q1

outliers = ((self.processed_data < (Q1 - 1.5 * IQR)) |
(self.processed_data > (Q3 + 1.5 * IQR)))

return self.processed_data[outliers.any(axis=1)]

logger.warning(f"Unsupported outlier detection method: {method}")
return pd.DataFrame()

def main():
"""
Main execution function demonstrating the DataProcessor workflow.
"""
try:
# Initialize processor
processor = DataProcessor('sample_data.csv')

# Load and process data
processor.load_data()
processor.clean_data(drop_columns=['unnecessary_column'])

# Perform analysis
analysis_results = processor.analyze_data()
print("Analysis Results:", analysis_results)

# Detect outliers
outliers = processor.detect_outliers()
print("Outliers:", outliers)

except Exception as e:
logger.error(f"An error occurred: {e}")

if __name__ == "__main__":
main()

Code Walkthrough

1. Imports and Logging Setup

  • Importing necessary libraries: pandas, numpy, typing
  • Configuring logging for better error tracking and debugging
  • Using type hints for improved code readability and type checking

2. DataProcessor Class

  • Designed as a comprehensive data processing utility
  • Encapsulates data loading, cleaning, and analysis functionalities
  • Uses type annotations and docstrings for clear documentation

3. Key Methods

load_data()
  • Supports multiple file formats (CSV, Excel)
  • Implements error handling for file loading
  • Logs information about the loaded dataset
clean_data()
  • Flexible data cleaning method
  • Supports column dropping and missing value handling
  • Preserves original data by creating a copy
analyze_data()
  • Computes comprehensive statistical metrics
  • Returns a dictionary of statistical information
  • Handles scenarios with no processed data
detect_outliers()
  • Implements Interquartile Range (IQR) method for outlier detection
  • Flexible design allowing future method expansions

4. Main Execution Function

  • Demonstrates the complete workflow of data processing
  • Includes error handling and logging
  • Provides a clear example of how to use the DataProcessor class

Best Practices Demonstrated

  • Error handling
  • Logging
  • Type hinting
  • Modular design
  • Flexible method implementations
  • Comprehensive documentation

Potential Improvements

  • Add more outlier detection methods
  • Implement more advanced data cleaning techniques
  • Create more robust error handling
  • Add unit and integration tests

This code walkthrough provides an example of a well-structured Python data processing script with multiple features and robust error handling.

Claude 3.5 Sonnet

Sonnet is more powerful, supporting deeper project context, better memory management, and more structured code generation. It performs well across data science, API interaction, and legacy code support.

Use Case: Building Python tools that interact with REST APIs, data analysis scripts, automation

Here’s an example of a data analysis script that demonstrates various common analysis techniques using Python:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from typing import Dict, List, Tuple
import logging

# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

class SalesAnalyzer:
"""
Analyzes sales data to provide insights on trends, patterns, and statistics.
"""

def __init__(self, data_path: str):
"""
Initialize the analyzer with data path.

Args:
data_path (str): Path to the sales data file
"""
self.data_path = data_path
self.df = None
self.summary_stats = {}

def load_and_prepare_data(self) -> None:
"""
Load data and perform initial preprocessing steps.
"""
try:
# Load the data
self.df = pd.read_csv(self.data_path)

# Convert date column to datetime
self.df['date'] = pd.to_datetime(self.df['date'])

# Basic data cleaning
self.df = self.df.dropna()

logger.info(f"Data loaded successfully. Shape: {self.df.shape}")

except Exception as e:
logger.error(f"Error loading data: {str(e)}")
raise

def calculate_basic_stats(self) -> Dict:
"""
Calculate basic statistical measures for numerical columns.

Returns:
Dict: Dictionary containing basic statistics
"""
numeric_cols = self.df.select_dtypes(include=[np.number]).columns

stats_dict = {}
for col in numeric_cols:
stats_dict[col] = {
'mean': self.df[col].mean(),
'median': self.df[col].median(),
'std': self.df[col].std(),
'min': self.df[col].min(),
'max': self.df[col].max()
}

self.summary_stats = stats_dict
return stats_dict

def analyze_sales_trends(self) -> pd.DataFrame:
"""
Analyze monthly sales trends.

Returns:
pd.DataFrame: Monthly sales summary
"""
# Group by month and calculate statistics
monthly_sales = self.df.groupby(self.df['date'].dt.to_period('M')).agg({
'sales': ['sum', 'mean', 'count'],
'revenue': ['sum', 'mean']
}).round(2)

# Calculate month-over-month growth
monthly_sales['sales_growth'] = (
monthly_sales[('sales', 'sum')].pct_change() * 100
).round(2)

return monthly_sales

def perform_customer_segmentation(self) -> Dict:
"""
Segment customers based on purchase behavior.

Returns:
Dict: Customer segments and their characteristics
"""
customer_stats = self.df.groupby('customer_id').agg({
'sales': ['count', 'sum', 'mean'],
'revenue': 'sum'
})

# Define segments using quantiles
segments = {
'High Value': customer_stats[('revenue', 'sum')] >= customer_stats[('revenue', 'sum')].quantile(0.75),
'Medium Value': (customer_stats[('revenue', 'sum')] >= customer_stats[('revenue', 'sum')].quantile(0.25)) &
(customer_stats[('revenue', 'sum')] < customer_stats[('revenue', 'sum')].quantile(0.75)),
'Low Value': customer_stats[('revenue', 'sum')] < customer_stats[('revenue', 'sum')].quantile(0.25)
}

segment_stats = {}
for segment_name, segment_mask in segments.items():
segment_stats[segment_name] = {
'count': segment_mask.sum(),
'avg_revenue': customer_stats.loc[segment_mask, ('revenue', 'sum')].mean(),
'avg_purchases': customer_stats.loc[segment_mask, ('sales', 'count')].mean()
}

return segment_stats

def visualize_trends(self, save_path: str = None) -> None:
"""
Create visualizations for key metrics.

Args:
save_path (str, optional): Path to save the visualizations
"""
# Set up the plotting style
plt.style.use('seaborn')

# Create a figure with multiple subplots
fig, axes = plt.subplots(2, 2, figsize=(15, 12))

# 1. Monthly Sales Trend
monthly_sales = self.analyze_sales_trends()
monthly_sales[('sales', 'sum')].plot(
ax=axes[0, 0],
title='Monthly Sales Trend'
)
axes[0, 0].set_xlabel('Month')
axes[0, 0].set_ylabel('Total Sales')

# 2. Sales Distribution
sns.histplot(
data=self.df,
x='sales',
ax=axes[0, 1],
bins=30
)
axes[0, 1].set_title('Sales Distribution')

# 3. Revenue by Customer Segment
customer_segments = self.perform_customer_segmentation()
segment_data = pd.DataFrame(customer_segments).T
segment_data['avg_revenue'].plot(
kind='bar',
ax=axes[1, 0],
title='Average Revenue by Customer Segment'
)
axes[1, 0].set_ylabel('Average Revenue')

# 4. Correlation Heatmap
numeric_cols = self.df.select_dtypes(include=[np.number]).columns
sns.heatmap(
self.df[numeric_cols].corr(),
annot=True,
cmap='coolwarm',
ax=axes[1, 1]
)
axes[1, 1].set_title('Correlation Heatmap')

plt.tight_layout()

if save_path:
plt.savefig(save_path)
logger.info(f"Visualizations saved to {save_path}")

plt.show()

def generate_report(self) -> str:
"""
Generate a summary report of the analysis.

Returns:
str: Formatted report string
"""
report = []
report.append("=== Sales Analysis Report ===\n")

# Basic Stats
report.append("Basic Statistics:")
for metric, stats in self.summary_stats.items():
report.append(f"\n{metric}:")
for stat_name, value in stats.items():
report.append(f" {stat_name}: {value:.2f}")

# Sales Trends
monthly_sales = self.analyze_sales_trends()
report.append("\n\nSales Trends:")
report.append(f"Total Sales: {monthly_sales[('sales', 'sum')].sum():,.2f}")
report.append(f"Average Monthly Sales: {monthly_sales[('sales', 'mean')].mean():,.2f}")

# Customer Segments
segments = self.perform_customer_segmentation()
report.append("\n\nCustomer Segments:")
for segment, stats in segments.items():
report.append(f"\n{segment}:")
for stat_name, value in stats.items():
report.append(f" {stat_name}: {value:,.2f}")

return "\n".join(report)

def main():
"""
Main execution function.
"""
try:
# Initialize analyzer
analyzer = SalesAnalyzer('sales_data.csv')

# Perform analysis
analyzer.load_and_prepare_data()
analyzer.calculate_basic_stats()

# Generate visualizations
analyzer.visualize_trends('sales_analysis_plots.png')

# Generate and print report
report = analyzer.generate_report()
print(report)

# Save report to file
with open('sales_analysis_report.txt', 'w') as f:
f.write(report)

logger.info("Analysis completed successfully")

except Exception as e:
logger.error(f"Error during analysis: {str(e)}")
raise

if __name__ == "__main__":
main()

This script demonstrates:

  1. Data Loading and Preprocessing

    • Loading CSV data
    • Basic data cleaning
    • Date conversion
  2. Statistical Analysis

    • Basic statistical measures
    • Time series analysis
    • Customer segmentation
  3. Visualization

    • Multiple plot types
    • Customized styling
    • Save functionality
  4. Reporting

    • Formatted text reports
    • Summary statistics
    • Trend analysis
  5. Best Practices

    • Error handling
    • Logging
    • Type hints
    • Modular design
    • Documentation

To use this script, you would need a CSV file with columns like:

  • date
  • customer_id
  • sales
  • revenue

The script can be extended by:

  • Adding more advanced statistical analyses
  • Including more visualization types
  • Implementing additional segmentation methods
  • Adding export functionality for different formats
  • Including predictive analytics

Claude 3.7 Sonnet

Claude 3.7 Sonnet introduces significant boosts in reasoning and document understanding. It’s capable of maintaining code coherence across long projects and responding accurately to system-level design prompts.

Use Case: Multi-file Python projects, document-driven code generation, long-format debugging.

Debugging a Complex Web Application

Here’s an example of a long-format debugging approach for a web application experiencing performance issues:

import logging
import time
import tracemalloc
import psutil
import requests
from datetime import datetime
from functools import wraps

# Configure logging
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
filename='app_debug.log',
filemode='w'
)
logger = logging.getLogger('performance_debugger')

# Performance monitoring decorator
def performance_monitor(func):
@wraps(func)
def wrapper(*args, **kwargs):
# Start memory tracking
tracemalloc.start()
process = psutil.Process()
memory_before = process.memory_info().rss / 1024 / 1024 # MB

# Start timing
start_time = time.time()
logger.info(f"Starting {func.__name__} at {datetime.now()}")

# Execute function
try:
result = func(*args, **kwargs)

# Log success
logger.info(f"Successfully executed {func.__name__}")
return result
except Exception as e:
# Log error with traceback
logger.error(f"Error in {func.__name__}: {str(e)}")
logger.error(traceback.format_exc())
raise
finally:
# Measure execution time
execution_time = time.time() - start_time

# Measure memory usage
memory_after = process.memory_info().rss / 1024 / 1024 # MB
memory_diff = memory_after - memory_before

# Get memory snapshot
current, peak = tracemalloc.get_traced_memory()
tracemalloc.stop()

# Log performance metrics
logger.info(f"Function: {func.__name__}")
logger.info(f"Execution time: {execution_time:.4f} seconds")
logger.info(f"Memory change: {memory_diff:.2f} MB")
logger.info(f"Current memory usage: {current / 1024 / 1024:.2f} MB")
logger.info(f"Peak memory usage: {peak / 1024 / 1024:.2f} MB")

# Log top memory consumers if significant memory increase
if memory_diff > 10: # If more than 10MB increase
logger.warning("Significant memory increase detected!")
snapshot = tracemalloc.take_snapshot()
top_stats = snapshot.statistics('lineno')
logger.warning("Top 10 memory consumers:")
for stat in top_stats[:10]:
logger.warning(f"{stat}")

return wrapper

# Database connection monitoring
class DatabaseMonitor:
def __init__(self, connection_string):
self.connection_string = connection_string
self.query_times = []
self.slow_threshold = 0.5 # seconds

def execute_query(self, query, params=None):
start_time = time.time()
logger.debug(f"Executing query: {query}")
logger.debug(f"With parameters: {params}")

try:
# Simulate database connection and query execution
# In real code, this would use actual database driver
time.sleep(0.1) # Simulating query execution time
result = {"data": "sample data"} # Simulated result

execution_time = time.time() - start_time
self.query_times.append(execution_time)

if execution_time > self.slow_threshold:
logger.warning(f"Slow query detected! Time: {execution_time:.4f}s")
logger.warning(f"Query: {query}")
logger.warning(f"Parameters: {params}")

# Suggest query optimization
self.suggest_optimization(query)

return result
except Exception as e:
logger.error(f"Database error: {str(e)}")
logger.error(traceback.format_exc())
raise

def suggest_optimization(self, query):
# Simple query optimization suggestions
if "SELECT *" in query:
logger.warning("Optimization suggestion: Avoid using SELECT * - specify only needed columns")

if "WHERE" not in query and ("SELECT" in query and "FROM" in query):
logger.warning("Optimization suggestion: Query has no WHERE clause - might return too many rows")

if "JOIN" in query and "INDEX" not in query:
logger.warning("Optimization suggestion: Consider adding indexes for JOIN operations")

# API request debugging
class APIDebugger:
def __init__(self):
self.request_history = []

def make_request(self, url, method="GET", headers=None, data=None, timeout=10):
request_id = len(self.request_history) + 1
logger.info(f"API Request #{request_id} - {method} {url}")

if headers:
logger.debug(f"Request #{request_id} Headers: {headers}")
if data:
logger.debug(f"Request #{request_id} Data: {data}")

start_time = time.time()

try:
# In real code, this would make an actual HTTP request
# response = requests.request(method, url, headers=headers, json=data, timeout=timeout)

# Simulate API request
time.sleep(0.2)
response_status = 200
response_data = {"status": "success", "data": {"id": 123}}

# Record request details
request_info = {
"id": request_id,
"url": url,
"method": method,
"headers": headers,
"data": data,
"status_code": response_status,
"response_time": time.time() - start_time,
"timestamp": datetime.now()
}
self.request_history.append(request_info)

# Log response
logger.info(f"API Request #{request_id} completed - Status: {response_status}")
logger.debug(f"Response data: {response_data}")

if request_info["response_time"] > 1.0:
logger.warning(f"Slow API request detected! Time: {request_info['response_time']:.4f}s")

return response_data

except Exception as e:
logger.error(f"API Request #{request_id} failed: {str(e)}")
logger.error(traceback.format_exc())
raise

# Frontend performance monitoring
class FrontendPerformanceMonitor:
def __init__(self):
self.render_times = {}

def log_render_time(self, component_name, render_time):
if component_name not in self.render_times:
self.render_times[component_name] = []

self.render_times[component_name].append(render_time)

if render_time > 0.1: # 100ms threshold
logger.warning(f"Slow component render: {component_name} took {render_time*1000:.2f}ms")

def analyze_performance(self):
logger.info("Frontend Performance Analysis:")

for component, times in self.render_times.items():
avg_time = sum(times) / len(times)
max_time = max(times)

logger.info(f"Component: {component}")
logger.info(f" Average render time: {avg_time*1000:.2f}ms")
logger.info(f" Maximum render time: {max_time*1000:.2f}ms")
logger.info(f" Render count: {len(times)}")

if avg_time > 0.05: # 50ms threshold
logger.warning(f"Component {component} has high average render time")
logger.warning("Suggestion: Consider memoization or component optimization")

# Example usage of the debugging tools
@performance_monitor
def process_user_data(user_id):
logger.info(f"Processing data for user {user_id}")

# Simulate database operations
db = DatabaseMonitor("postgresql://user:password@localhost:5432/mydb")
user_data = db.execute_query("SELECT * FROM users WHERE user_id = %s", (user_id,))

# Simulate API calls
api = APIDebugger()
external_data = api.make_request(f"https://api.example.com/users/{user_id}")

# Simulate frontend rendering
frontend = FrontendPerformanceMonitor()
frontend.log_render_time("UserProfile", 0.08)
frontend.log_render_time("UserActivityFeed", 0.15)
frontend.log_render_time("UserSettings", 0.03)

# Analyze frontend performance
frontend.analyze_performance()

# Simulate some memory-intensive operation
large_list = [i for i in range(1000000)]

# Return processed data
return {
"user_data": user_data,
"external_data": external_data,
"processed_items": len(large_list)
}

# Run the function with debugging
if __name__ == "__main__":
try:
logger.info("Starting application debugging session")
result = process_user_data(12345)
logger.info(f"Process completed successfully: {result}")
except Exception as e:
logger.critical(f"Application failed: {str(e)}")
finally:
logger.info("Debugging session ended")

This debugging example includes:

  1. Performance monitoring with timing and memory tracking
  2. Detailed logging at multiple levels
  3. Database query analysis and optimization suggestions
  4. API request debugging and performance tracking
  5. Frontend component render time analysis
  6. Memory leak detection
  7. Exception handling with full traceback logging
  8. Process resource usage monitoring

In a real application, you would adapt this code to your specific environment and add more specialized debugging for your particular issues.

DeepSeek

DeepSeek is gaining momentum in the developer tools space, with models that compete closely with top players in technical tasks.

DeepSeek V3

V3 is a general-purpose model, but with strong performance in code-related tasks. It excels in generating well-documented Python modules and logic functions.

Use Case: Class and module generation, scripting for data pipelines, document-backed development.

scripting for data pipelines

Key Features of This Data Pipeline Script:

  1. Modular Design:

    • Separate methods for each ETL stage (Extract, Transform, Load)
    • Support for multiple source/destination types
  2. Error Handling:

    • Comprehensive logging at each stage
    • Error tracking and statistics
    • Configurable failure handling
  3. Data Quality:

    • Validation rules framework
    • Type conversion handling
    • Null value checking
  4. Flexible Configuration:

    • JSON-based configuration
    • Support for different data sources (local files, S3, APIs)
    • Multiple destination options
  5. Performance Tracking:

    • Execution statistics
    • Timing metrics
    • Record counting
  6. Extensibility:

    • Easy to add new source/destination types
    • Custom transformation rules
    • Additional validation rules

This script can be extended with:

  • Parallel processing for large datasets
  • Data partitioning strategies
  • More sophisticated transformation functions
  • Integration with workflow managers like Airflow
  • Data lineage tracking
  • Alerting mechanisms for failures

DeepSeek R1 and R1 1776

These versions feature optimized token efficiency and faster response times. Their strengths lie in utility coding, small web backend tasks, and educational tools.

Use Case: Flask app generation, coding bootcamp tools, integration testing.

Example of a Flask web application with user authentication, database integration, and RESTful endpoints:

# app.py
from flask import Flask, render_template, redirect, url_for, request, flash, jsonify
from flask_sqlalchemy import SQLAlchemy
from flask_login import LoginManager, UserMixin, login_user, login_required, logout_user, current_user
from flask_wtf import FlaskForm
from wtforms import StringField, PasswordField, SubmitField
from wtforms.validators import DataRequired, Email, Length
from werkzeug.security import generate_password_hash, check_password_hash
import os

# Initialize Flask application
app = Flask(__name__)
app.config['SECRET_KEY'] = os.environ.get('SECRET_KEY', 'dev-key-123')
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///site.db'
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False

# Initialize extensions
db = SQLAlchemy(app)
login_manager = LoginManager(app)
login_manager.login_view = 'login'

# Database Models
class User(db.Model, UserMixin):
id = db.Column(db.Integer, primary_key=True)
username = db.Column(db.String(20), unique=True, nullable=False)
email = db.Column(db.String(120), unique=True, nullable=False)
password_hash = db.Column(db.String(128))
posts = db.relationship('Post', backref='author', lazy=True)

def set_password(self, password):
self.password_hash = generate_password_hash(password)

def check_password(self, password):
return check_password_hash(self.password_hash, password)

class Post(db.Model):
id = db.Column(db.Integer, primary_key=True)
title = db.Column(db.String(100), nullable=False)
content = db.Column(db.Text, nullable=False)
user_id = db.Column(db.Integer, db.ForeignKey('user.id'), nullable=False)

# Forms
class RegistrationForm(FlaskForm):
username = StringField('Username', validators=[DataRequired(), Length(min=4, max=20)])
email = StringField('Email', validators=[DataRequired(), Email()])
password = PasswordField('Password', validators=[DataRequired(), Length(min=6)])
submit = SubmitField('Sign Up')

class LoginForm(FlaskForm):
email = StringField('Email', validators=[DataRequired(), Email()])
password = PasswordField('Password', validators=[DataRequired()])
submit = SubmitField('Login')

class PostForm(FlaskForm):
title = StringField('Title', validators=[DataRequired()])
content = StringField('Content', validators=[DataRequired()])
submit = SubmitField('Create Post')

# Authentication Routes
@app.route('/register', methods=['GET', 'POST'])
def register():
if current_user.is_authenticated:
return redirect(url_for('dashboard'))

form = RegistrationForm()
if form.validate_on_submit():
user = User(username=form.username.data, email=form.email.data)
user.set_password(form.password.data)
db.session.add(user)
db.session.commit()
flash('Account created successfully!', 'success')
return redirect(url_for('login'))

return render_template('register.html', form=form)

@app.route('/login', methods=['GET', 'POST'])
def login():
if current_user.is_authenticated:
return redirect(url_for('dashboard'))

form = LoginForm()
if form.validate_on_submit():
user = User.query.filter_by(email=form.email.data).first()
if user and user.check_password(form.password.data):
login_user(user)
return redirect(url_for('dashboard'))
flash('Invalid email or password', 'danger')
return render_template('login.html', form=form)

@app.route('/logout')
@login_required
def logout():
logout_user()
return redirect(url_for('home'))

# Main Application Routes
@app.route('/')
def home():
posts = Post.query.order_by(Post.id.desc()).limit(3).all()
return render_template('home.html', posts=posts)

@app.route('/dashboard')
@login_required
def dashboard():
posts = current_user.posts
return render_template('dashboard.html', posts=posts)

@app.route('/post/new', methods=['GET', 'POST'])
@login_required
def new_post():
form = PostForm()
if form.validate_on_submit():
post = Post(title=form.title.data, content=form.content.data, author=current_user)
db.session.add(post)
db.session.commit()
flash('Post created successfully!', 'success')
return redirect(url_for('dashboard'))
return render_template('create_post.html', form=form)

# API Endpoints
@app.route('/api/posts', methods=['GET'])
def get_posts():
posts = Post.query.all()
return jsonify([{
'id': post.id,
'title': post.title,
'content': post.content,
'author': post.author.username
} for post in posts])

@app.route('/api/posts/<int:post_id>', methods=['GET'])
def get_post(post_id):
post = Post.query.get_or_404(post_id)
return jsonify({
'id': post.id,
'title': post.title,
'content': post.content,
'author': post.author.username
})

# Error Handlers
@app.errorhandler(404)
def page_not_found(e):
return render_template('404.html'), 404

@app.errorhandler(500)
def internal_error(e):
db.session.rollback()
return render_template('500.html'), 500

# Login Manager Loader
@login_manager.user_loader
def load_user(user_id):
return User.query.get(int(user_id))

# Create Database Tables
with app.app_context():
db.create_all()

if __name__ == '__main__':
app.run(debug=True)

Templates Directory Structure:

templates/
├── base.html
├── home.html
├── register.html
├── login.html
├── dashboard.html
├── create_post.html
├── 404.html
└── 500.html

Example base.html:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>{% block title %}Flask App{% endblock %}</title>
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css">
</head>
<body>
<nav class="navbar navbar-expand-lg navbar-dark bg-dark">
<a class="navbar-brand" href="{{ url_for('home') }}">FlaskApp</a>
<div class="collapse navbar-collapse">
<div class="navbar-nav">
{% if current_user.is_authenticated %}
<a class="nav-item nav-link" href="{{ url_for('dashboard') }}">Dashboard</a>
<a class="nav-item nav-link" href="{{ url_for('logout') }}">Logout</a>
{% else %}
<a class="nav-item nav-link" href="{{ url_for('login') }}">Login</a>
<a class="nav-item nav-link" href="{{ url_for('register') }}">Register</a>
{% endif %}
</div>
</div>
</nav>
<div class="container mt-4">
{% with messages = get_flashed_messages(with_categories=true) %}
{% if messages %}
{% for category, message in messages %}
<div class="alert alert-{{ category }}">{{ message }}</div>
{% endfor %}
{% endif %}
{% endwith %}
{% block content %}{% endblock %}
</div>
</body>
</html>

Key Features:

  1. User Authentication System
    • Registration with password hashing
    • Login/Logout functionality
    • Session management with Flask-Login
  2. Database Integration
    • SQLAlchemy ORM
    • User-Post relationship
    • Database migrations
  3. RESTful API Endpoints
    • JSON responses
    • CRUD operations for posts
  4. Error Handling
    • Custom 404 and 500 pages
    • Database transaction rollback
  5. Security Features
    • Password hashing with Werkzeug
    • CSRF protection
    • Secure session management
  6. Template Inheritance
    • Bootstrap integration
    • Flash message system
    • Responsive design

To Run:

  1. Install requirements:
pip install flask flask-sqlalchemy flask-login flask-wtf python-dotemail
  1. Initialize database:
python3 -c "from app import app, db; with app.app_context(): db.create_all()"
  1. Start application:
FLASK_APP=app.py flask run

This example demonstrates a complete web application with:

  • User authentication and authorization
  • Database relationships
  • Form validation
  • REST API endpoints
  • Error handling
  • Template inheritance
  • Bootstrap styling

For production use, you should:

  1. Use a proper database (PostgreSQL/MySQL)
  2. Set environment variables for secrets
  3. Add rate limiting
  4. Implement proper error logging
  5. Use production WSGI server (Gunicorn/uWSGI)
  6. Add CSRF protection for API endpoints
  7. Implement proper password reset functionality

Perplexity: Sonar

Perplexity’s Sonar model has made a strong entrance in the code generation field. It blends conversational fluency with surprisingly accurate Python logic suggestions. It also excels in open-domain reasoning and is particularly strong when used as a research coding assistant.

Use Case: Generating code alongside research papers, explaining unfamiliar Python codebases, natural language querying of code functions

Explaining an unfamiliar Python codebase involves several steps to ensure clarity and understanding. Here’s a structured approach:

1. Understand the Project Structure

  • Look at how the project is organized. Python projects typically use a modular structure with directories for different components like src, tests, docs, etc.
  • Identify key files such as __init__.py, which marks a directory as a Python package, and requirements.txt, which lists dependencies.

2. Identify Key Modules and Packages

  • Determine the main modules and packages used in the project. This can include third-party libraries or custom modules.
  • Use tools like pip freeze to list installed packages if requirements.txt is not available.

3. Review Documentation and Comments

  • Check for docstrings in modules, functions, and classes. These provide crucial information about what each piece of code does.
  • Look for comments that explain complex logic or decisions.

4. Analyze Code Flow

  • Start with entry points like main.py or app.py to understand how the application initializes.
  • Follow the flow of data and control through functions and classes.

5. Use Tools for Code Analysis

  • Tools like pylint, flake8, and black can help identify coding standards and potential issues.
  • Use IDEs or editors with code inspection features to highlight errors or inconsistencies.

6. Run Tests

  • If available, run unit tests or integration tests to see how different components interact.
  • Tools like pytest are commonly used for testing.

7. Consult External Resources

  • If the codebase uses specific frameworks or libraries, consult their documentation.
  • Look for similar projects or examples online to compare structures and approaches.

Example Walkthrough

Let’s say you’re analyzing a Flask web application:

# app.py
from flask import Flask, render_template
from flask_sqlalchemy import SQLAlchemy

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///site.db'
db = SQLAlchemy(app)

# Models
class User(db.Model):
id = db.Column(db.Integer, primary_key=True)
username = db.Column(db.String(20), unique=True, nullable=False)

# Routes
@app.route('/')
def home():
return render_template('home.html')

if __name__ == '__main__':
app.run(debug=True)
  1. Project Structure: The project likely includes directories for templates (templates/), static files (static/), and possibly tests (tests/).

  2. Key Modules: The main modules here are Flask and Flask-SQLAlchemy.

  3. Documentation: There are no docstrings in this example, but comments could explain the purpose of each route or model.

  4. Code Flow: The application starts with app.py, initializes Flask, sets up the database, defines models, and defines routes.

  5. Tools: Use pylint or flake8 to check for coding standards.

  6. Tests: Run tests using pytest if available.

  7. External Resources: Consult Flask and Flask-SQLAlchemy documentation for more details on their usage.

Mistral

Mistral’s models are recognized for speed and multilingual support. While not solely focused on Python, their high performance in general coding tasks makes them versatile tools for cross-language projects.

Mistral Small 3.1 and Mistral Large

Mistral Large, trained on advanced technical content, is increasingly used in software teams that rely on multiple languages including Python, Rust, and TypeScript.

Use Case: Building Python modules inside larger multi-language stacks, secure coding environments, mobile backend systems

Example of a simple mobile backend system using Firebase with Flask as the backend server. This example will demonstrate how to set up a basic REST API that interacts with Firebase Firestore for data storage.

Prerequisites

  1. Firebase Account: Create a Firebase project and enable Firestore.
  2. Flask: Install Flask and the Firebase Admin SDK.
  3. Python: Ensure you have Python installed.

Step 1: Set Up Firebase

  1. Create a Firebase project in the Firebase Console.
  2. Enable Firestore in the Firebase Console.
  3. Generate a private key file for your Firebase project and download it.

Step 2: Install Dependencies

Install the necessary Python packages:

pip install Flask firebase-admin

Step 3: Create the Flask Application

Create a file named app.py and add the following code:

from flask import Flask, request, jsonify
import firebase_admin
from firebase_admin import credentials, firestore

# Initialize Flask app
app = Flask(__name__)

# Initialize Firebase Admin SDK
cred = credentials.Certificate('path/to/your/serviceAccountKey.json')
firebase_admin.initialize_app(cred)
db = firestore.client()

# Define a collection name
COLLECTION_NAME = 'items'

@app.route('/items', methods=['GET'])
def get_items():
try:
items_ref = db.collection(COLLECTION_NAME)
docs = items_ref.stream()
items = [doc.to_dict() for doc in docs]
return jsonify(items), 200
except Exception as e:
return jsonify({'error': str(e)}), 500

@app.route('/items', methods=['POST'])
def create_item():
try:
data = request.get_json()
if not data:
return jsonify({'error': 'No data provided'}), 400
db.collection(COLLECTION_NAME).add(data)
return jsonify({'message': 'Item created successfully'}), 201
except Exception as e:
return jsonify({'error': str(e)}), 500

@app.route('/items/<item_id>', methods=['GET'])
def get_item(item_id):
try:
item_ref = db.collection(COLLECTION_NAME).document(item_id)
item = item_ref.get()
if item.exists:
return jsonify(item.to_dict()), 200
else:
return jsonify({'error': 'Item not found'}), 404
except Exception as e:
return jsonify({'error': str(e)}), 500

@app.route('/items/<item_id>', methods=['PUT'])
def update_item(item_id):
try:
data = request.get_json()
if not data:
return jsonify({'error': 'No data provided'}), 400
item_ref = db.collection(COLLECTION_NAME).document(item_id)
item_ref.update(data)
return jsonify({'message': 'Item updated successfully'}), 200
except Exception as e:
return jsonify({'error': str(e)}), 500

@app.route('/items/<item_id>', methods=['DELETE'])
def delete_item(item_id):
try:
item_ref = db.collection(COLLECTION_NAME).document(item_id)
item_ref.delete()
return jsonify({'message': 'Item deleted successfully'}), 200
except Exception as e:
return jsonify({'error': str(e)}), 500

if __name__ == '__main__':
app.run(debug=True)

Explanation

  1. Initialization: The Flask app and Firebase Admin SDK are initialized. The Firestore client is created.
  2. Routes:
    • GET /items: Retrieves all items from the Firestore collection.
    • POST /items: Creates a new item in the Firestore collection.
    • GET /items/<item_id>: Retrieves a specific item by its ID.
    • PUT /items/<item_id>: Updates a specific item by its ID.
    • DELETE /items/<item_id>: Deletes a specific item by its ID.

Running the Application

Run the Flask application:

python app.py

Your mobile backend system is now running on http://127.0.0.1:5000/. You can use tools like Postman or curl to test the API endpoints.

Qwen

Qwen, developed by Alibaba, has emerged as a serious contender in the LLM space, especially in Asia. It is known for precise reasoning, reliable multilingual support, and solid Python output across logic-heavy tasks.

Qwq 32b

Qwq 32b is a high-parameter model known for retaining complex function chains and managing memory across sessions. It supports Python packages out of the box and can build complex class structures.

Use Case: Data science pipelines, ML model integration in Python, report generation scripts

Qwen 2.5 VL 7b and Qwen 2.5 Max

These models emphasize performance and response speed while retaining coding depth. 2.5 Max in particular is used in enterprise environments for building AI-driven applications.

Use Case: Code completion with strong class and decorator support, maintaining legacy systems, production-grade pipeline support

Final Comparison: Best LLMs for Python by Category

CategoryBest Model
Best for full-stack Python developmentGPT-4o
Best lightweight model for simple tasksClaude 3.5 Haiku
Best for data science and analysisGemini 2.5 Pro
Best for cloud-native Python (Google Cloud)Gemini Flash
Best for large enterprise systemsQwen 2.5 Max
Best research-oriented assistantPerplexity Sonar
Best for Python learning and educationChatGPT with GPT-4o Mini or Claude 3.5
Best low-latency model for APIsMistral Small 3.1
Best for multilingual code environmentsDeepSeek V3 or Mistral Large

Choosing the right LLM for Python development in 2025 comes down to what kind of work you’re doing. Need fast autocomplete in an IDE? Gemini Flash or Claude Haiku are great choices. Want in-depth reasoning and debugging for a production-grade Python app? GPT-4o or Gemini 2.5 Pro can carry the load.

As LLMs continue to evolve, developers should focus on how these models complement their coding workflows rather than trying to replace them. Used wisely, the best LLMs will not just write code but help you understand it better, explain it to others, and ship more reliable Python applications in less time.

hire python developer cta